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Abstract— The macroscopic porous media theory consists of the mixture theory, restricted by the
volume fraction concept. The incorporation of this concept leads to major difficulties in constructing
a consistent macroscopic theory. With the help of thermodynamic restrictions, in addition with the
multiplicative decomposition of the deformation gradient as well as experimental observations it
will be shown, as to how a consistent phenomenological porous media theory for compressible and
incompressible elastic porous solid models filled with an incompressible fluid can be developed
which is mathematically and physically well balanced. © 1998 Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

In order to develop a consistent phenomenological porous media theory many approaches
have been carried out in the literature in the past (see, e.g., Biot and Willis, 1957 ; Mow et
al., 1980 ; Bowen, 1980, 1982 ; Passman e al., 1984 ; de Boer, 1995a). The crucial point for
the development of a consistent theory is concerned with missing field equations due to the
introduction of volume fractions so that the theory is not closed. The reason is that with
the introduction of the volume fraction concept to extend the macroscopic mixture theory,
the microlevel is touched. For this level, however, no balance equations are provided by
the mixture theory.

In order to overcome this shortcoming several attempts have been made as, e.g., the
introduction of additional balance equations—more or less physically well founded—or
additional evolution equations or other constitutive relations for quantities which are
related to the microscale.

Another shortcoming in some existing approaches is due to the saturation condition
being overlooked as a general constraint. This shortcoming leads to the consequence that
no transition of compressible models to the incompressible case is possible and that no
hybrid models (models containing incompressible and compressible constituents) can be
developed which play a role in rock mechanics (see de Boer, 1995a). In particular, it is not
possible to verify the effective stress principle. This principle states that the stress in a
saturated porous solid can be addictively decomposed into a weighted pore pressure part
and a part which is governed by the motion of the skeleton. This principle has been
experimentally and theoretically repeatedly proved (see the extensive discussion in Lade
and de Boer, 1994) and should be incorporated in the porous media theory.

The goal of this paper is to construct a porous media theory for compressible and
incompressible porous solids filled with an incompressible fluid that avoids the afore-
mentioned drawbacks. A helpful tool to develop a consistent macroscopic porous media
theory are restrictions for the constituents obtained from thermodynamic investigations.
These investigations will be extensively discussed and a thermodynamic structure will be
developed which can be used to limit the form of the constitutive equations for incom-
pressible and compressible constituents in elastic and inelastic areas. It turns out that in the
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case of elastic constituents constitutive relations can be developed for incompressible and
compressible porous solids which are mathematically and physically well balanced.

Most helpful for constructing the thermodynamic structure is to utilize the multi-
plicative decomposition, proposed by Bluhm and de Boer (1994), of the deformation
gradient into a tensor which describes the real deformations of the real materials and into
a tensor which reflects the changes of the pores. This decomposition throws light on the
kinematics at the microscale and makes it easy to solve the stated closure problem. More-
over, it throws light upon the constraint due to the saturation condition. By introducing
the multiplicative decomposition of the deformation gradient the rate formulation of this
condition reveals that, for example, for a binary model the rates of the volume changes of
the two constituents are dependent of each other at the macro- as well as the micro-level.
Thus, the motions of both constituents are constrained.

With the help of the saturation condition as a constraint the effective stress principle
can be clearly stated. Thus, confirming the results for incompressible media already stated
in the early stage of the development of a porous media theory by Fillunger (1913, 1914,
1915) and von Terzaghi (1936) as well as the result of Suklje (1969) for a hybrid model
which are carefully proved by experimental observations (see Lade and de Boer, 1994).

At this stage the contents of this paper should be briefly outlined. After the introduction
of the volume fraction concept in the section of basic relations the kinematics of a general
porous media model will be discussed. Then the balance equations of the mixture theory
will be reviewed. The derivation of the thermodynamic structure to restrict the constitutive
relations will be an essential part of this treatise. Thereafter constitutive equations for a
fluid-saturated compressible and incompressible elastic porous solid will be developed.
Finally, some complementary and concluding remarks will close this paper.

2. BASIC RELATIONS

In this section the material independent equations, i.e., the volume fraction concept,
the kinematics, and the balance equations will be reviewed. For a complete derivation of
these basic relations the reader is referred to de Boer and Ehlers (1986) and de Boer and
Didwania (1995).

2.1. The volume fraction concept

The volume fraction concept in connection with the mixture theory has turned out to
be an efficient tool to investigate saturated or empty porous solids. This concept has the
effect to distribute the mass of the solid skeleton and of the fluids over the total control
space shaped by the porous solid. The distribution takes place with the help of volume
fraction numbers that fix the ratios of the volumes of the constituents in relation to the
volume of the control space. The basic assumption for the volume fraction concept is that
the pores are statistically distributed over the control space. In this case, the equality of
volume and surface porosities is given as a statistical necessity. The volume fraction concept
gives rise to the effect that “smeared” substitute continua for the solid and fluid phases
with smooth properties arise, which fill the control space simultaneously. Thus these
substitute continua show the same properties as a mixture body. Therefore the mixture
theory is the adequate basis for the mechanical and thermodynamical treatment at the
macroscale. However, in order to guarantee the closure of the porous media theory several
requirements must be fulfilled. This problem will be discussed in Section 3.

The concept of volume fractions was introduced by Woltman (1794) (see de Boer,
1992, as well as Bluhm and de Boer, 1994). Later, the mining engineer Delesse (1848)
discovered that the surface porosities are equal to the volume porosities if the pores are
statistically distributed. Delesse’s (1848) reflections played an important role at the very
beginning of the development of a porous media theory in the first half of this century. All
competent researchers in this field, namely Fillunger (1913, 1935) who called Delesse’s
statement the Delessian law, von Terzaghi (1934), von Terzaghi and Rendulic (1934) as
well as Heinrich and Desoyer (1955, 1956) referred to Delesse’s finding. In particular,
Heinrich and Desoyer (1956) proved in their remarkable paper that the Delessian law is
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also valid for anisotropic solids. Finally, Kubik (1979) made an interesting proposal to
extend the volume fraction concept. He introduced a second order, symmetric tensor of
structural permeability P.

The drawback of all aforementioned suggestions is that the existence of volume frac-
tions at the macroscale are required in each point of substitute (partial) bodies without
having being properly defined. This can be done proceeding from micromechanic con-
siderations (see de Boer and Didwania, 1995, or de Boer ef al., 1991). We proceed here
from the geometrically averaging procedure (de Boer et al., 1991) and arrive at the same
result if an ensemble average, mainly used in suspension theory and the theory of fluidized
beds, is applied (de Boer and Didwania, 1995). We define the volume fractions in the actual
placement.

Let r describe the position of a material point of a constituent with volume elements
dv, in the control space and x the centre of volume element dv. In order to determine the
average volume (realistic) element duv* of each constituent ¢* an indicator function

1 forrede®

, B#a 2.1
0 forredd® 1

f=ﬂm0={

is introduced, where ¢ denotes the time. Thus, for the partial volume (realistic) element dv®,
with (2.1) the following relation is obtained :

de

dv*(x,0) = J i (r, )do,
= J‘ Y'(x+&0do, r=x+¢& 2.2)
de

Here the position vector r is substituted by x+ &, and the integration refers to the micro-
scopic local é-reference system with the origin x, i.e. the centre of dv. With (2.2) the volume
fractions can be formulated as follows

\&

do

|
n“(x, [) = dv = aj\ xd(l', t) dl)u. (2.3)
de

The volume fractions in (2.3) satisfy the volume fraction condition for x constituents ¢*:
Yow=1, (2.4)

which can be easily proved. If the porous solid is saturated the volume fraction condition
(2.4) turns out to be an important constraint in the constitutive theory.

With the help of the volume fractions the real mass of each constituent will be
distributed continuously over the control space. This procedure leads to the creation of
substitute continua with smooth properties and reduced densities. These substitute continua
have less to do with the true constituents of the porous medium. Several extended con-
siderations are needed, in particular, in order to formulate the boundary value problems.

2.2. Kinematics

As pointed out in Section 2.1 the substitute continua created with the help of the
volume fractions show at first glance the same properties as a mixture. Concerning the
kinematics of the substitute continua with imaginary material points there are two fun-
damental assumptions to describe the kinematics of the constituents:
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(1) Each spatial points x of the actual placement is simultaneously occupied by material
points X of all x constituents ¢* at time 7.
(2) Each constituent is assigned an independent state of motion.

In particular, the second assumption is strictly valid only for mixtures. However, a porous
medium is not a mixture. Indeed, there is interaction between the constituents in a saturated
porous solid not only due to friction effects but also due to a space displacement, described
by the saturation condition (2.4). It is easily recognized that this condition must always be
fulfilled to maintain the saturation. The saturation condition constrains the motions of the
individual constituents as will be shown in Section 3 on constitutive theory.

If the motion of a constituent is understood as a chronological succession of the
placements ¥, then for the position x of the material points X*, which are in turn described
by the reference positions X, at time ¢ = f,, the following relation holds at time ¢:

x = %.(X,, 1). 2.5)
Equation (2.5) represents the Lagrangian description of the motion. The function g, (2.5)

is postulated to be unique and uniquely invertible at any time. The existence of a function
inverse to (2.5) leads to the Eulerian description of motion, i.e.:

X, = %' (x, 1) (2.6)
A mathematically sufficient condition for the existence of eqn (2.6) is given, if the Jacobian
J, = detF, 2.7

differs from zero at each point X,. Here

_ (Xs D)

F. X,

= grad, g, = grad, x (2.8)

is the so-called deformation gradient. From the Lagrangian description of the motion
function y, in (2.5) the velocity and the acceleration of a material point of a constituent ¢*
can be computed :

s X, (X, 0)
X, =——5— Xy =77 .

2.9
-4 5[ 3 o 0t2 ( )l
Using (2.6), it follows the Eulerian description of the velocity and the acceleration:
X, = X4(%, ), X! = XU, 0). (2.9),

As the velocity of a material point is defined in (2.9), and (2.9),, the material time derivative
of a differentiable function I'(x, ¢) can be formulated :

or
I, = +gradlx;. (2.10)

Here, the material time derivative is shown for a scalar function. The definition can easily
be extended to vector- and tensor-value functions.

In the following, some deformation measurements are needed. The basic quantity for
these measurements is the deformation gradient (2.8). For our purpose it is convenient to
introduce only the right Cauchy—Green deformation tensor
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C, = FTF,. 2.11)

Moreover, from (2.9), the velocity gradient L, with respect to the actual placement can be
calculated which is also related to the deformation gradient and the material time derivative
of the deformation gradient

L, = gradx,, L,=(F).F;". (2.12)

The symmetric part of the velocity gradient L, is given by
1
D, = 3(L,+L]). (2.13)

Moreover, two additional time derivatives are required for the following investigations,
namely the time derivatives of the Jacobian (2.7) and of the right Cauchy—Green tensor
2.1

(). = LMD, 1), (C), =2FD,F,. (2.14)

For further investigations two important multiplicative decompositions of the deformation
gradient (2.8) are necessary. The first decomposition concerns the split into volume-pre-
serving and spherical parts denoted by the symbols (.~.) and (.".):

F, = FF,, (2.15)

where

F, =) (2.16)
is the spherical part of F,. Moreover, it is recognized that

detF, =1 .17

and that F, is the volume-preserving part of F,.

The second decomposition of the deformation gradient F, is motivated by the obser-
vation that the deformations of porous media are composed of the deformations of the real
material and the changes of the pores. Therefore it is assumed that the deformation gradient
can be multiplicatively decomposed into a macroscopic tensor F,; which describes the
deformations at the microscale, namely of the real materials, and into a tensor F,, which
reflects the remaining part of the deformation of the control space (an extensive discussion
of this decomposition is contained in the two papers by Bluhm and de Boer, 1994 ; de Boer,
1995a):

F, = F F,z. (2.18)

The usefulness of the above decomposition (2.18) has already been shown in the afore-
mentioned papers, in particular, to describe properties at the microscale as, e.g., com-
pressibility and incompressibility. For this purpose it is necessary to formulate some
additional measurements using F,; and F,,. This can be done according to the definitions
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Table 1. Deformation measurements

F, F.v F.z

J, = detF, Joy=detF,y J.r =detF
C.= FzTFz Cov= FZN aN Cr= FQTRFQR
L,= (Fa);F;l Lv= (FuN);Ff;w! L= (sz);F:;QI
D, = 3(L,+L;] D,y = 3Ly +Liy) D,z = 5(Lx+ L)
(J)e = /(D 1) (Jon)z = Jon(Dop* I (Lor)e = Jua(Dop 1)
(C,); = 2F/D,F, (Con)s = 2FIyDopFoy (C.r)e = 2F1xD,F .z
F,=FF, Foy = FF.y Fop=F.iF.
J, =detF, =1 Jy=detF,, =1 Jr=detF =1
jz =J, jnV = Jx jm = J.r
C. = (L)*°C, Cov = Up)**Cuy Cax = (1) "Cus

3 = FaT—a (-:aé',\/ = FZ’VFmV Cxlg = FIRFM
o=z (e = (Lun)e (er)e = Jur)e
(€)= ZFZDde Can)y= ZFaTNDfNFaN (CuR); = 2FIRD£RF91R

D? is the deviator of D,.

and the derivatives in this section. The results are summarized in Table 1 to follow where,
also the results for the partial constituent @* are represented.

For further investigations the volume elements in the actual and reference placements
must be considered. It is well-known in continuum mechanics that the following transport
theorem concerning the volume elements holds:

dv = J, du,, (2.19)

where
deg, = dvg,(t = ty), dv =do(x, 1) (2.20)
are the volume elements in the reference placement at every position X,, denoted by the
lower index « and in the actual placement at the position x, respectively. With the relation

(2.19) it is easy to formulate the volume strain e, which is important for the investigations
to follow:

ey == — 1 =J,—1, 2.21)

where (2.19) has been used.
In a similar way the volume strain of real materials can be calculated (see de Boer, 1995) :

e.r=Jm—1. (2.22)
Thus, the Jacobian J, is related to the volume strain e,,:

Jor = 1+esz, (2.23)
whereas the Jacobian J, is related to the volume fractions (see de Boer, 1995a) :

1o,
J:zN:

(2.24)

4

n

Here 73, is the volume fraction in the reference placement.
After the extensive discussions of the kinematics of a saturated porous medium the
balance equations will be briefly reviewed.
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2.3. Balance equations

In order to derive the balance equations of the mixture theory, balance equations for
each constituent ¢* must be established, where interaction or supply terms, respectively,
are used for the description of chemical and physical exchange processes. The sum of the
partial balances of the x constituents ¢ results in the balance laws of the mixture, which
must be equivalent to the balance laws of a one-component material. This requirement

involves constraints for the introduced interaction terms (For a complete derivation, see
Bluhm, 1996).

2.3.1. Balance of mass With respect to the volume element dv, the balance equation of
mass for each constituent ¢* is the local statement

(0", +p* divx,, = (2.25)

where p* is the partial density of ¢ and p” represents the mass supplied to ¢* by all other
constituents that occupy x at time t, which must meet the demand

2,7 =0 (2.26)

i.e., the sum of the local mass supply terms of all x constituents vanishes.

2.3.2. Balance of momentum In the local statement, the axiom of the balance of linear
momentum for a constituent ¢~ is

div T*+ p*(b* —x) + p* = p*x_, 2.27)
where T represents the partial Cauchy stress tensor of the constituent ¢* and p*b* is the

external body force density. The quantity p* denotes the linear momentum supply per unit
volume which can be interpreted as an interaction force and is constrained by

p=20 (2.28)

1

I M=

o«

i.e., the sum of all interaction forces of all constituents ¢* vanishes.
2.3.3. Balance of moment of momentum As we are not interested in the investigations
of polar materials, we do not consider any moment of momentum exchange between the

individual constituents. Then the local statement of the balance equation of moment of
momentum yields (see de Boer ef al., 1991)

IxT = 0. (2.29)

The cross product, connecting the identity tensor I and Cauchy’s stress tensor T* is explained
in de Boer (1982). Equation (2.29) is only fulfilled if the stress tensor T* is symmetric. Thus,

T =(T%)7. (2.30)
In the case of existing moment of momentum supplies the balance equation of moment in
momentum yields the non-symmetry of T®. This implies in continuum mechanics the

introduction of additional rotational degrees of freedom for the material point.

2.3.4. Balance of energy The axiom of the energy balance of the constituent ¢* is
introduced in the following local form
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P(e), =T D, —p*r* —divq* = é, — p*(e* =5 X, " X}). (2.31)

Herein &” stands for the partial specific internal energy of ¢° r* is the partial external heat
supply and q” is the heat flux vector. The quantity é* represents the local energy supply to
¢" from the other k— 1 constituents and is constrained by

iﬁ:& (2.32)

In order to derive the constraints on the supply terms (2.26), (2.28), and (2.32) some
convenient summations must be introduced to avoid some obscure consequences of the
derivations of the barycentric velocity (see de Boer, 1995b; Bluhm, 1996).

2.3.5. The entropy inequality A useful tool to gain restrictions for constitutive response
functions is the entropy inequality. This relation follows from the balance of energy after
some manipulations with the absolute temperature. It can be shown (see e.g. Planck, 1964)
that the absolute temperature can serve as an integrating factor for the sum of the rate of
internal energy and of the stress power (see also Miiller, 1979). This expression, the above
stated sum divided by the absolute temperature, is denoted as entropy and thermodynamics
is based on this notion—introduced by Clausius (1865). However, this conception seems
only to be clear for reversible processes. For non-reversible processes the whole procedure
to construct a fundamental inequality remains in some parts obscure, mysterious and
incomprehensible (see Balian, 1982). Moreover, Baierlein (1992) criticized the entropy
idea with the following words: “‘Students find entropy a mysterious concept—and not
surprisingly so, for it is a difficult notion”.

As no improvement in the formulation of the second law of thermodynamics is in sight
we will introduce the second law of thermodynamics in the usual way more so as in the
constitutive theory the entropy inequality yields good results. In the mixture theory the
postulate of one common entropy inequality for the whole mixture body is simultaneously
a necessary and a sufficient condition for the existence of dissipation mechanisms within
the mixture. If all constituents ¢* have the same absolute Kelvin temperature ® the
derivation of the entropy inequality results in (see de Boer et al., 1991):

) [~p’(¢“);—@;p“na—ﬁ“~x;+T“-D,

1 1
+ g0 grad@—p° (W‘— §X;°x;>} >0, (233)

where * = *(x, ¢) is the free Helmholtz energy and #* = 5*(x, ) the specific entropy. The
free Helmholtz energy function is related to the specific energy and the specific entropy by

Y =& —0n’. (2.34)

It should be mentioned that in the case of isothermal deformations and elastic material
behaviour the free Helmholtz energy function turns into the specific stored energy function.

In Section 2 the general thermodynamic structure of fluid-saturated compressible and
incompressible porous solids is developed. In particular, the multiplicative decomposition
of the deformation gradient can throw light on some properties of the microscale and the
entropy inequality can yield important restrictions for the constitutive equations, not only
for the stress and interaction forces but also for phases transitions. However, the last point
will be investigated in another context. In the next section on the constitutive theory we
restrict our treatment to a binary elastic porous medium.
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3. CONSTITUTIVE THEORY

3.1. Preliminaries

It is easy to recognize from the preceding developed field equations that not all
mechanical and thermodynamical fields can be determined by the balance equations if the
body force density and the external heat supply are known. Therefore, constitutive equa-
tions are needed for the unknown fields that connect these quantities with motion and
temperature functions and derivations of these functions. This means that in the porous
media theory constitutive equations must be formulated for partial and true quantities as
well as for several coupling mechanisms between the different constituents.

The development of constitutive equations for saturated porous media is based on the
same principles that govern the derivation of constitutive equations in classical continuum
mechanics of one-component materials. These are : determinism, equipresence, local action,
material objectivity, and dissipation.

Guided by these principles, constitutive equations for a binary model, namely com-
pressible or incompressible elastic porous solids, filled with an incompressible fluid, will be
derived in the following.

3.2. Constraints and entropy inequality
Before going into the details, the saturation condition (2.4) for a binary model (S =
solid, ¥ = fluid)

nS+n" =1 (3.1)

will be examined. The material time derivative of (3.1) yields
(m°)s+(n")r—gradn” (x;—x5) = 0. 3.2

Considering (2.24) and some time derivative contained in Table 1 the saturation condition
in the rate formulation is gained :

—1’ (D D+n*Dse D=1 (Dp-D+n"(Dpe-I) —gradn®-(xp—x5) =0,  (3.3)

where in the course of the evaluation (Dgy*I) and (Dzy*I) have been substituted by the
differences (Dg*I) minus (Dg,* 1) and (D) minus (Dg, ).

Relation (3.3) clearly shows that the volume changes of the solid and fluid phases are
coupled. Thus, the motions are constrained.

This fact has some consequences. If the entropy inequality or another similar inequality
is used to gain restrictions for the constitutive equations one has to be careful in the
evaluation as the volume changes are coupled. The entropy inequality can be considered
as a minimum problem which reaches its minimum at zero. Thus, a constraint like the
saturation condition must be added in the evaluation process to the entropy inequality
provided with a Lagrangian factor. From the mathematical point of view the saturation
condition (3.3) must be an equation in excess. Therefore, the system of field equations of
the two phases must be constructed in such a way that this requirement is satisfied. This
can be done by introducing constitutive equations for the Jacobian Jg; or more general
for the right Cauchy—Green deformation tensor Cg in order to incorporate the whole
deformation of the solid phases at the microlevel, see Bluhm (1996) and de Boer (1995a).
Then, the system of fields is closed and the saturation condition (3.3) is a surplus equation.
For more details concerning the closure problem the reader is referred to Bluhm (1996)
and de Boer (1995a).

It should be emphasized that the saturation condition (3.3) must always be considered
as a constraint independent of the material behaviour.

As aforementioned constitutive equations must be formulated for the right Cauchy—
Green deformation tensor bCs, because no balance equation for this quantity is contained
in the mixture theory. The constitutive equation for Cs, must reflect some properties of the
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microscale and bring these to the macroscale. In the following a rather simple relation is
chosen:

CSR = CSR (Cs)- (3-4)

More complicated ansétze for Cgy are currently under study.
With the material time derivatives in Table 1 we obtain considering (3.4) :

Dsp' 1= F 5Dy, 3.5)
where
0Cse\T
Fs = Fs ( aCSSR) CsiFL. (3.6)

Thus, with (3.5) the constraint (3.3) can be reformulated as:
n5(I—~Fs) Ds+n" (Dp- 1) —n" (Deg - 1) +grad nf +(xz—x5) = 0. (3.7)

This constraint as an equation in excess in the system of fields must be provided with a
Lagrange multiplier 4 and added to the entropy inequality (2.33) which is treated as a
minimum problem for the fields. For the proposed binary model the following inequality
for isothermal deformations is obtained from (2.33) considering (3.7) and (2.28) :

—p (%) s—p W) e+ Ds* [T+ 0% 20— F )]+ D [T+ 1" — 1" (D g * 1)
—(pF—igradn’) «(x;—x5) = 0. (3.8)

In (3.8) any mass exchange between the constituents is neglected.

A major simplification of the constitutive theory is given by the incompressibility
conditions of the constituents. In particular, for liquid saturated porous solids this condition
is a reasonable assumption, as liquids are incompressible in a wide stress-range and the
compressibility of the realistic solid material can be neglected in many cases in comparison
with the compressibility of the bulk body. The incompressibility conditions are:

Jsg=1, Jpp=1, 3.9)
or in the rate formulation
n°Dsg1=0, nDpp-1=0. (3.10)

The rate formulations of the incompressibility conditions must be multiplied by the volume
fractions n° and n* because they are referred to an intermediate placement ( for more details
see Bluhm and Boer, 1994). Moreover, the conditions (3.10) provided with Lagrangian
multipliers k5% and x"® must be added to the entropy inequality (2.33) along with the
saturation condition (3.3) multiplied by the Lagrangian multiplier 2.

From (2.33) the following inequality for the proposed incompressible model for iso-
thermal deformations is obtained, where the mass exchange between the constituents is
neglected.

=W ) s—p W)+ Dy [T* =M —n*(A—k5F)F 5]+ D (T +nFAD)
— 1 Deg  D(A— Ry - (pF — A grad n") «(x;—x5) = 0. (3.11)

The hybrid model, i.e. compressible solid and incompressible fluid phases can easily be
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derived combining the above stated inequalities. However, in all cases one has to recall the
closure problem. If, e.g., the solid material is incompressible the incompressibility condition
must be incorporated as a constraint, but no additional constitutive equation for a solid
quantity should be formulated. This would be an additional equation in excess which
violates the closure problem stated above.

At the end of this section some remarks are concerned with the principle of deter-
minism. This principle is the leading principle in the constitutive theory (see Truesdell and
Noll, 1965). The principle of determinism demands that “‘the stress in a body is determined
by the history of the motion of that body”. However, both aforementioned inequalities
indicate that the principle of determinism must obviously be modified. Indeed this was
already done by Truesdell and Noll (1965) :

“Principle of determinism for simple materials subject to internal constraint : The stress
T at time ¢ is determined by the history F\’(s) of the deformation gradient only to within a
stress N that does no work in any motion satisfying the constraints.”

The above principle of determinism including the effect of internal constraints was,
however, formulated for a one-component continuum, For a saturated porous medium it
must be extended. It influences not only the stress states of the individual constituents, but
also the interaction forces, see eqns (3.8) and (3.11).

3.3. Evaluation of the entropy inequality

With the entropy inequalities (3.9) and (3.11) the basic relations are developed to gain
restrictions for the constitutive equations for the binary model under study. In the following
these restrictions will be obtained for porous media models with compressible and incom-
pressible constituents.

Constitutive equations (response functions) are necessary for saturated porous models
with :

(1) Incompressible elastic solid and incompressible fluid materials
Rp= P, T BE}, (3.12)
where
T = TS+ Al —n(A—k5%)F s,
e =T +n" L (3.13)

(2) Compressible elastic solid and incompressible fluid materials (hybrid model of first
type)

R = ¥, Tic, T, BE} 5 (3.14),
where

Tic = TS+n° A0~ F ). (3.14),
The principles of determinism and local action state that the response functions in (3.12)
and (3.14) for a material point X,, at any time ¢, and any place x, must be determined by
the history of an arbitrary small neighbourhood of this material point. The history of this
small neighbourhood is laid down by the process variables s(x, #) which reflect the history
of the motions of the two partial constituents solid and fluid. For the elastic model under
study, the following process variables are postulated :

5= {Cq, Xp—X5}. (3.15)

As the incorporation of the reference placements X, of the constituents ¢* is neglected,
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only homogeneous porous media can be described. The choice of the process variables is
determined as follows: the elastic deformations of the partial porous solid is described by
Cs. The velocity difference x> — X’ governs dissipative effects.

For the aforementioned models (point 1-2), thermodynamical restrictions result from
the entropy inequalities (3.8), (3.11), for compressible and incompressible models (point 1
and 2). Using standard arguments with several symmetry and skew symmetry conditions
(de Boer, 1993; de Boer and Kowalski, 1995) the investigations yield the models to be
governed by constitutive equations which are relatively simple. The whole evaluation of
the different forms of the entropy inequality leads to a lengthy formalism which would
exceed the frame of this paper. Thus, only the main results for the individual models are
listed.

3.3.1. Incompressible model (incompressible elastic solid matrix saturated by an incom-
pressible fluid). This model has been repeatedly treated in the literature and the model,
neglecting all deformations at the microscale, is in general accepted. The evaluation of the
entropy inequality in the form (3.11) yields the following restrictions for the constitutive
equations:

TS = —n*A+n°(A—xF)F s+ T}, (3.16)

with the following effective stresses for the solid and fluid phases

s oy’

S 9,5 T, S R 17
Te =2p FsaCSFs+P 6(X}—x§)®(xF X5s), (3.17)
T = —n 21+TE, (3.18)

7Vl
TE = pf ———— ® (xF—X}). 3.19
=P O(Xp—X5) (x% ) ( )

Moreover, it turns out that

A=k (3.20)

As k™ is the Lagrange multiplier related to the incompressibility condition, ™ can be
identified as the pore-liquid pressure p. Thus

i=p. (3.21)
Furthermore, a dissipation inequality remains. With (3.21) this inequality reads as
(p" —p gradn”) *(xz—x5s) = 0. (3.22)
Now, the mixture equilibrium is examined. The interaction force p” is given by
p=pgradn’, (3.23)
and the constitutive relation for the stress of the fluid phase simplifies to
T = —n'pl (3.24)

With (3.21) the constitutive equation for T® takes the following form in the mixture
equilibrium state :
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N

_ d
TS = —nSpI—{-nS(p—KSR)ﬁS+2pSFst~F§. (3.25)
s

If the deformations at the microscale # g, which represent the volume-preserving part of
the micromechanical deformations, are neglected, the form of the constitutive equation
remains as already stated by Fillunger (1936). In this case the Lagrange multipliers are
equal

L=k =R =p, (3.26)

The above stated constitutive equations define a porous media model which plays an
important role in many branches of engineering, e.g. in soil mechanics and in the suspension
theory.

3.3.2. Hybrid model of first type (compressible elastic solid matrix saturated by an
incompressible liquid). This model has been a subject for several experimental investigations
(see, e.g., Lade and de Boer, 1994) because of its importance, for example, in rock mechanics.
The main results of the thermodynamical investigations in the mixture equilibrium state
are:

N

i
TS = —n'p(I—F )+ The, Tic = 20°Fs 3 FL, (3.27)
A
T = —nfpl, (3.28)
pF = pgradn”’. (3.29)

The constitutive equations (3.27) and (3.28) contain Suklje’s (1969) effective stress principle
which represents an improvement of von Terzaghi’s effective stress principle. For a purely
hydrostatic stress state from (3.27)

S

is obtained, where the influence of Cg; has been neglected.
With the constitutive assumption

JSR — JESR/CS, (33 l)

where Csz and Cy are the compressibilities of the true solid material and of the partial solid
body. With (3.31) the constitutive relation for the hydrostatic stress (3.30) yields

c
p5 = —np (1 - %)ﬂ;g. (3.32)
N

Suklje’s (1969) formula is concerned with the total hydrostatic stress of the mixture body.
The sum of (3.28) and (3.32) yields

N

C
F=pi+pS=—p (1 —nS C'S’*)eri-, (3.33)

thus, Suklje’s (1969) formula is derived (see also the extensive discussion of the effective
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stress principle in Lade and de Boer, 1994). The formula (3.33) fits the test observation of
Nur and Byerlee (1971) very well (see also de Boer, 1995a).

3.4. Complementary remarks

The complementary remarks concern an empty porous solid, the determination of the
interface pressure (Lagrange multiplier) A and the determination of uplift, friction and
capillarity.

It can easily be proved that for empty porous solids the volume fraction condition
(2.4), although still valid, is not an equation in excess. Therefore, it is not a constraint and
does not enter the entropy inequality. Thus, the stresses in the partial bodies are identical
with the effective stresses of the solid phase in (3.17) or (3.27).

The interface pressure p cannot be determined by a constitutive equation. Rather, we
must use the balance equation of motion to compute p. In the mixture equilibrium state

T = —n'pl (3.34)

is valid, see (3.24). Moreover, in the mixture equilibrium state the interaction force p* can
be expressed by the pore pressure, see (3.23) :

p’ = pgradn’. (3.35)

With (3.34) and (3.35) and the acceleration of gravity g the balance equation of momentum
(2.27) turns out to be

—grad(np) +p (g —xp) +pgradn” =0 (3.36)
or in the static state
—nfgradp+pfg = 0. (3.37)
Introducing the average density of the true fluid p™ the relation
pf = nfp™® (3.38)

holds. Moreover, choosing the vertical coordinate z and the corresponding unit vector e,
so that

g =ge; (3.39)
from (3.36) the relation
P o (3.40)
z

is obtained considering (3.37) and (3.38). From (3.36) the explicit value for the pore-fluid
pressure is gained

P =po+pTgz,

or
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p = pot+yhe, (3.41)

with p, as a possible pore-fluid pressure for z = 0 and y** as the specific weight of the pore-
fluid.

The last complementary remark is concerned with the phenomena uplift, friction, and
capillarity—a binary model with compressible and incompressible constituents. From the
balance equation of momentum (2.27) excluding any mass exchange the equations of
motion for the mixture body in the gravity field is gained

div(T*+T°) + (p° + p )g — p*x5— p"x; = 0, (3.42)

where g is the acceleration of gravity. With the constitutive relations (3.20) and (3.22) for
the saturated binary model as well as (3.54) and the corresponding relation for the solid,
eqn (3.59) turns into

div Tic —div {p(L+n5F 5)} + (1% + 05 % PN pTXE =0 (3.43)

with

7 = p*F|g| (3.61)

as the specific weight. Considering the saturation condition (2.4) the following relation
holds:

PSR nEy R = RS (R — ). (3.45)

Along with relation (3.45) we derive from (3.43) the following equation :

divTSe—div {p(I+n°F5)} + 7% L%I S (ySE — R f;}l —XL—pFxE=0. (3.46)
In (3.46)
g
ku — _nS FR &
P
— (= 1)yRE (3.47)
?

lg!

is the uplift force (see de Boer and Ehlers, 1990). The derivation of the uplift formula
reveals that the uplift phenomenon is independent of such properties as compressibility and
incompressibility. This is not surprising as (3.47) can be derived from Archimedes’ principle
which refers only to the density of the fluid and the displaced amount of fluid.

Moreover, the vector

& _

k='FR
= el

gradp (3.48)

in (3.46) can be interpreted as the friction force in the flow zone or the capillary force in
the suction zone, see de Boer and Ehlers (1990).
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4. CONCLUSIONS

In this paper the general thermodynamic structure to gain restrictions for fluid-satu-
rated compressible and incompressible porous solids has been developed. In particular, the
saturation condition in the rate formulation has been incorporated into the thermodynamics
structure as a constraint. Whereas the consideration of incompressible material in the
development of the saturation condition is relatively simple the consideration of com-
pressible material is more complicated.

In this case the multiplicative decomposition of the deformation gradient makes the
derivation of the rate formulation of the saturation condition much easier. Moreover,
with the multiplicative decomposition of the deformation gradient the incompressibility
conditions for the true materials can be clearly stated by kinematic quantities and it is not
necessary to use material dependent quantities, namely the true densities, to describe
incompressibility.

The thermodynamics structure developed in this paper yields important restrictions
for the effective Cauchy’s stress tensors of the individual constituents consisting of incom-
pressible and compressible materials. Furthermore, the thermodynamic investigations yield
reasonable constitutive equations for the interaction force in a binary model. It is revealed
that the restrictions gained from the entropy inequality are also only valid for the effective
interaction force which is not influenced by compressibility or incompressibility.

A new approach to develop consistent mathematical models with incompressible
and/or compressible phases is currently under study at Essen University.
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